

Combined Exosome Release Inhibitory & Fibroblast Phenotype Reversal Nanomedicines Normalize CAFs & Potentiate Cancer Immunotherapy

Ahmed Elzoghby ^{1*}, May Freag^{1†}, Mostafa Mohammed ^{1†}, Krishna Maremanda ¹, Arpita Kulkarni ¹, Hae Lin Jang¹, Shiladitya Sengupta ^{1,2,3*} ¹ Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA. ² Dana Farber Cancer Institute, Boston, MA. ³ Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA. [†] Equal contribution ^{*} Correspondence: aelzoghby@bwh.harvard.edu, shiladit@mit.edu

Background & Methodology

Results (In vitro Cell Study)

Fig. 1. Cancer cells secrete exosomes to induce differentiation of fibroblasts into immunosuppressive cancer associated fibroblasts (CAFs). Then, cancer cells maintain the CAFs phenotype via activating FGFR & Wnt/β-catenin signaling pathways. Therefore, normalization of CAFs is a major goal to enhance the efficacy of cancer immunotherapy.

Fig. 4. Mechanistic analysis including qRT-PCR, Western Blot & ELISA of TAS/ICG Nano-treated MRC5 CAFs.

Results (Exosome Characterization) αSMA/DAPI/FNC αSMA/DAPI/COL1A1 α-SMA / DAPI / PKH267-Exosomes SHK/GW Control Activ. CAFs CM SHK Contro GW GW-SHK Fig. 2. internalization & Quantitation of A549 Fig. 3. Interferometric imaging & Nanoparticle Fig.5. Immunofluorescence imaging & exosomes into MRC5 fibroblasts (Bar:50 µm) Tracking Analysis of A549 exosomes. flow cytometry of MRC5 fibroblasts treated by active. vs normal. CAFs CM.

Results (In vivo Study)

immunosuppressive CAFs phenotype to quiescent one which enhanced the antitumor efficacy of αPD-L1 antibody.