

A Computational Patient-Specific Model of Impella Support for Cardiogenic Shock

Farhad R. Nezami¹, Farhan Khodaee², Zhongwei Qi³, Scott. Corbett³, Steven P. Keller², Elazer R. Edelman^{2,4}

¹Thoracic and Cardiac Surgery Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; ²Institute for Medical Engineering and Science, Massachusetts Institutes of Technology, Cambridge, USA; ³Abiomed, Inc., Danvers, USA; ⁴Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA

BACKGROUND & OBJECTIVES

- •Up to 15% of myocardial infarction patients also suffering from cardiogenic shock [1]
- Percutaneous ventricular assist devices (PVAD) such as the Impella increasingly provide circulatory support
- Due to limited understanding of Impella performance; objective of present study is to explore hemodynamics of Impella

Patient-specific geometry of the aorta [1]

Dynamic boundary conditions & scaled inlet wave form [2]

Polyhedral computational grid to reduce computational cost

METHODS: STUDY DESIGN

- Baseline (Impella is off)
- •Scenario 1 (S1) and Scenario 2 (S2) with 30% and 70% of Impella contribution to the total perfusion of 5 L/min

 Table 1: Working conditions in studied scenarios

Model	P-Level	rpm	Impella Q (L/min)	LV Q (L/min)
Baseline	P-0	0	0.0	5
S1	P-3	33,000	1.5	3.5
S2	P-9	46,000	3.5	1.5

RESULTS: FLOW STRUCTURE

- •Complex vortex structures and significantly increased velocity observed at the site of Impella jet exit [1]
- Turbulence and vorticities more dominant as Impella flow rises

METHODS: COMPUTATIONAL MODEL

Figure 2: Digitalized model with boundary conditions and computational grid

Figure 3: Turbulent kinetic energy distribution at peak systole

RESULTS: SHEAR METRICS

•Increased share of Impella rises local wall shear stress within the reported range of other circulatory support systems [1]

Figure 4: Wall shear stress distribution at peak systole

DISCUSSIONS & CONCLUSIONS

- Higher vorticity & turbulent energy with increasing PVAD support
- End-organ perfusion maintained in all scenarios even with lesspulsatile flow (i. e. increased Impella contribution) [1]
- Unique utility of computational models to quantify flow and perfusion patterns
- •Promising potential of computational approaches for mechanistic understanding & risk stratification of mechanical support therapies

REFERENCES

- [1] FR. Nezami et al., "A Computational Fluid Dynamics Study of the Extracorporeal Membrane Oxygenation-Failing Heart Circulation". ASAIO J. 2021 Mar 1;67(3):276-283.
- [2] FR. Nezami et al., "Hemodynamics of Impella Support: A Computational Patient-specific Model Of Therapy For Cardiogenic Shock", 66th ASAIO Annual Conference 2021

Contact: frikhtegarnezami@bwh.harvard.edu