

## Aortic stenosis analysis using a novel fully automatic Al powered toolbox

Amir Rouhollahi<sup>1</sup>, James N. Willi<sup>1</sup>, Jonathan Brown<sup>2</sup>, Hoda Javadikasgari<sup>1</sup>, Tsuyoshi Kaneko<sup>1</sup>, Elazer R. Edelman<sup>2,3</sup>, Farhad R. Nezami<sup>1</sup>

VE RI TAS

<sup>1</sup> Thoracic and Cardiac Surgery Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; <sup>2</sup> Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, USA; <sup>3</sup> Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA

## **Background and significance**

- Aortic valve stenosis (AS) is the most prevalent valvular heart disease in developed countries.
- Surgical aortic valve replacement (SAVR) is increasingly complemented by transcatheter aortic valve implantation (TAVI).
- Clinical events are associated with the design of prosthetic valves and interventional guidelines
- Fully automatic tool developed to explore calcium burden AND distribution in raw images to connect the morphology to the outcome

## Methods

- CT images through internal IRB to secure raw images for >100 AS patients in DICOM format.
- Accumulative representation of calcification projections extracted for each case.



**Fig.1:** Flowchart representation of calculating calcification distribution on a heart valve from the raw DICOM images.



Fig.2: (a) Detected area centroid is used to convert to polar coordinate; (b) Local radios minima plotted to identify the preliminary candidates for commissures; (c) A novel method of minimum enclosed triangle is applied to assist listing final commissure points; (d) the three local minima closest to the middle of enclosed triangle edges are selected to identify individual leaflets.

Fig.3: Location of coronaries are extracted from the raw DICOM images (left and right coronaries spotted by dark and light red circles) to identify coronary vs non-coronary cusps.





Fig.4: Automatic segmentation of cusps and calcifications for individual leaflets. (a) Non-coronary cusp; (b) Right coronary cusp; (c) Left coronary cusp



**Fig.5:** (a) Calcium distribution quantification on each cusp using two non dimensional numbers: Angular index showing how disperse calcification is from the bisect and Radial index representing the distance from the center of the valve; (b) Total angular distribution histogram is calculated relative to the reference point

**Table 1**: Prototypical radial and angular indices calculated for the representative sample in Fig. 3

|                                                     |             | LCC        | RCC   | NCC          |
|-----------------------------------------------------|-------------|------------|-------|--------------|
|                                                     | Radial      | 0.204      | 0.213 | 0.119        |
|                                                     | Angular     | 0.181      | 0.178 | 0.148        |
| Indices are obtained for Left coronary cuspid (LCC) |             |            |       |              |
| right coronary cuspid (RCC), and non-cor            |             |            |       | non-coronary |
|                                                     | cuspid (NCC | <b>;</b> ) |       |              |



## Conclusion

- Fully automatic algorithm developed to detect the patient-specific morphology of sinus and valve landmarks to extract the morphology of calcification in terms of burden and distribution
- Al-guided approaches offer unique potential to update guidelines and enhance clinical decision.

Contact: arouhollahi@bwh.harvard.edu