

Risk of Cardiac Ischemia in respiratory failure patients using upper body venoarterial extracorporeal membrane oxygenation: A computational study

Farhad R. Nezami, PhD
Thoracic and Cardiac Surgery Division

Evolving field of organ support and replacement therapy

Extracorporeal Membrane Oxygenation (ECMO)

 Temporary heart and lung support outside of the OR

Evolving field of organ support and replacement therapy

Extracorporeal Membrane Oxygenation (ECMO)

 Temporary heart and lung support outside of the OR

Computational simulation

VPH 2018, ASAIO 2021, Computers in Biology and Medicine 2021, Journal of Cardiovascular Translational Research 2021

ECMO to Bridge Upper Body Venoarterial Approach

- Transplant centers motivated to maintain transplant candidates
- Bridge patients with end-stage lung disease complicated by pulmonary hypertension/RV failure
 - profoundly challenging as they have both lung failure and circulatory failure -> the optimal approach is unknown
- Shunt blood around the cardiopulmonary circulation and off load the RV while simultaneously providing for gas exchange

Results

Results Hemodynamics

Blood Flow rate

Coronary perfusion

Results Oxygen Transport

Perfusion with low-oxygen blood!!

	Artery	Area-time average of oxygen pp (mmHg)	
Lower Body	Descending Thoracic Aorta	51.575	•
Upper Body	Left subclavian	400	/\<
	Left carotid	41.565	
	Right carotid	41.741	
	Right subclavian	43.179	\wedge
Coronary Arteries	Right coronary 1	35.595	
	Right coronary 2	35.568	
	Left Circumflex	36.726	
	Left Anterior Descending 1	36.515	\wedge
	Left Anterior Descending 2	36.407	

In Closing

- Complex interaction of VA ECMO and host
- Computational modeling as an effective tool
- Numerous questions to answer:
 - Efficacy to oxygenate the aorta?
 - Risk of cardiac ischemia?
 - How does titration of support alter blood flow distribution and end organ oxygen delivery?
 - Effect on perfusion of and flow to the arm?

In Closing

- Complex interaction of VA ECMO and host
- Computational modeling as an effective tool
- Numerous questions to answer:
 - Efficacy to oxygenate the aorta?
 - Risk of cardiac ischemia?
 - How does titration of support alter blood flow distribution and end organ oxygen delivery?
 - Effect on perfusion of and flow to the arm?

Acknowledgment

- Hamed Moradi (PhD student, TU Eindhoven)
- Prof. Elazer Edelman (MIT, HMS, BWH)
- Prof. Steven Keller (Johns Hopkins)

Mass General Brigham